

What is Kizamu?

- A computer-based sculpting system for creating digital characters
- Incorporates

 - Technical advances
 - Novel interaction paradigms
- - High-end digital character design for the entertainment industry

Requirements for Digital Character Design

- Digital clay
 - Clay-like: intuitive to sculpt, represents both fine detail and organic shapes
- Responsive
- Fits into the animation production pipeline
 - Accept scanned data as well as other standard representations

Kizamu System

- Objects represented as Adaptively Sampled Distance Fields (ADFs)

 ADFs can be directly and intuitively edited

 ADFs represent fine detail and smooth organic surfaces

 ADFs support fast processing with a reasonable memory footprint
- Volumetric sculpting interface that exploits the distance field to provide intuitive interaction
- Accepts range data, triangle models, Bezier patches, and implicit functions as input
- · Produces LOD triangle models as output

A Brief Overview of ADFs · Distance fields A distance field is a scalar field that specifies the distance to the surface of a shape The distance may be signed to distinguish between the inside and outside of the shape

Regularly Sampled Distance **Fields**

- Distance fields must be sampled at high enough rates to avoid aliasing (jagged edges)
- Very dense sampling is required when fine detail is present
- Regularly sampled distance fields require excessive memory when any fine detail is present

Adaptively Sampled Distance Fields (ADFs)

- Detail-directed sampling of a distance field
 - High sampling rates only where needed
- Spatial data structure (e.g., an octree)
- · Reconstruction method (e.g., trilinear interpolation)
 - For reconstructing the distance field and gradient from sampled distance values

Adaptively Sampled Distance **Fields**

A 2D crescent ADF and its

Advantages of ADFs for Editing

- Represent both smooth surfaces and sharp corners without excessive memory
- Sculpting is direct, intuitive, and fast using simple Boolean operations
- Does not require control point manipulation or trimming
- The distance field can be used to enhance the
- user interface

 Guide the position and orientation of the sculpting tool

 Enable distance-based constraints for carving

What was Required to Build Kizamu

- Innovations in the sculpting interface
- · Advances in ADF generation and ADF editing
- · New approaches for ADF rendering
- Methods for generating ADFs directly from range data and converting ADFs to triangle models

Sculpting Interface

- Surface following
- Distance-based constraints
- · Control-point editing

Sculpting Interface

- · Distance-based constraints
- · Control-point editing

Sculpting Interface

- · Distance-based constraints
- · Control-point editing

Bottom-up ADF Generation

• Requires too many distance computations, too much memory, pre-set resolution

Fully populate

Top-down ADF Generation

Requires expensive neighbor searches and redundant distance computation

Tiled Generation

- Reduced memory requirements, better memory coherency and reduced computation
- Significantly faster (20x)
 - 2 seconds vs 40 seconds for a level 9 ADF
 7.6 seconds for a level 12 ADF
- More detail ((8x)³ higher resolution)
 - level 12 and level 13 ADFs vs level 9 ADFs

Tiled Generation - Method Outline

- Recursively subdivide root cell to a level L
- Cells at level *L* requiring further subdivision are appended to a list of candidate cells, C-list
- These candidate cells are recursively subdivided between levels *L* and *2L*, where new candidate cells are produced and appended to *C-list*
- Repeat layered production of candidate cells (2L to 3L, etc.) until C-list is empty

Tiled Generation – Tiling

- For each candidate cell, computed and reconstructed distances are produced only as needed during subdivision
- These distances are stored in a tile, a regularly sampled volume
- Avoids recomputing distance values shared by neighboring cells. A corresponding volume of bit flags keeps track of valid distances in the tile.
- The tile resides in cache memory and its size determines \boldsymbol{L}

Sculpting

- Sculpting is localized regeneration
 - The ADF is regenerated inside cells that overlap the tool's bounding volume
 - Regeneration combines the distance fields of the ADF and the tool using CSG operations

Local Rendering

· Ray casting method

- Problems

 - Woefully inadequate for global view changes

Adaptive Ray Casting

- Adaptive ray casting method

 - Image divided into a hierarchy of tilesTiles are subdivided according to perceptually based
 - Pixels in tiles greater than 1x1 are bilinearly interpolated
- Achieve 6x speedup (10x for supersampling)

Adaptive Ray Casting

Rays cast to render part of the left image

Global Rendering of Point Models

- Method for generating point models from ADFs
 - Seed each boundary leaf cell with randomly placed points with number of points proportional to surface area within the cell

 Relax the points onto the ADF surface using the distance
 - field and its gradient

 Optionally shade each point using the distance gradient
- Can generate 800,000 Phong illuminated points in 0.2 seconds
- · Point models are sufficient for positioning

Global Rendering using Triangles

- Convert ADFs to triangle models and render interactively with hardware
- Fast new triangulation algorithm creates triangle models from ADFs on-the-fly

 - Watertight and oriented
 Good-quality triangles
 200,000 triangles in 0.37 seconds
 Can create LOD models

Converting to Triangle Models

- Seed
 - Assign a vertex to each boundary leaf cell of the ADF, initially placing vertices at cell centers
- Join
 - Join vertices of neighboring cells to form triangles
- - Move vertices to the surface using the distance field
- Improve
 - Move vertices over the surface towards their average neighbors' position to improve triangle quality

Creating LOD Triangle Models

- Adapt triangulation to generate LOD models

 - Seed vertices in (possibly) non-leaf boundary cells that satisfy a minimum error criterion
 - Ignore cells below these in the hierarchy

Converting Range Data to ADFs

• Capture 2D range images from multiple views

A range image

Converting Range Data to ADFs

Combine distances from multiple range images to estimate ADF distance values

ADF generated from 14 synthetic range images

Kizamu Demonstration

With Thanks

- Joe Letteri
- John Arnold
- Ray Jones
- Jackson Pope